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Abstract
Childcare centers gather lots of children who need protection. Focusing on minimizing

physical harm, the impact of natural hazards induced by precipitation and temperature

fluctuations on childcare center buildings is a critical concern. Heavy rainfall and extreme

temperatures can compromise structural integrity and pose health risks. Leveraging historical

data from NASA's Global Precipitation Mission and childcare center locations from

Homeland Infrastructure Foundation-Level Data, we processed and cleaned the dataset,

utilizing machine learning clustering algorithms. The K-means clustering algorithm and

Gaussian Mixture Model, among others, classified childcare centers based on precipitation

and temperature data, with silhouette scores above 0.3. Visualization on a US map revealed

varying risks among states, influenced by environmental factors. This study underscores the

importance of incorporating additional elements like wind and snowfall in future research to

assess childcare facility risks and regional vulnerabilities comprehensively.
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1 Introduction

Childcare licensing [1] is a regulatory process implemented by government authorities at the

state or territory level to establish and enforce specific standards for the operation of

childcare programs. While the primary objective of child care licensing is to safeguard the

health, safety, and well-being of children in care, the foundation of child protection lies in

minimizing the risk of physical harm [2]. This involves ensuring that buildings are

structurally sound and free from natural hazards, adhering to proper food service and

sanitation practices, and having program policies that equip staff to respond effectively to

emergencies.

Among those factors, the impact of natural hazards, specifically those induced by

precipitation and temperature fluctuations, on childcare center buildings is a critical concern.

Changes in weather patterns, such as heavy rainfall, storms, or extreme temperatures, can

pose significant risks to childcare facilities' structural integrity and safety. Excessive

precipitation may lead to flooding or water damage, compromising the building's foundation

and creating potential hazards. On the other hand, extreme temperatures, whether excessively

hot or cold, can strain a facility's infrastructure, affecting heating, ventilation, and air

conditioning systems. Such conditions not only jeopardize the physical safety of the building

but also pose potential health risks to the children and staff within. Therefore, addressing and

mitigating the impact of natural hazards caused by precipitation and temperature is

paramount in ensuring the overall safety and resilience of childcare centers.

Historical precipitation and surface temperature records offer a reliable estimate of regions

prone to heightened risk. This information can be instrumental in addressing and mitigating

potential infrastructure losses in those areas. Therefore, We took advantage of the

precipitation and surface temperature data obtained from the NASA Global Precipitation
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Mission (GPM) and child care center locations from Homeland Infrastructure

Foundation-Level Data (HIFLD) to classify vulnerable child care centers in Florida, US.

We filtered the dataset from HIFLD to get every childcare center building’s longitude and

latitude, matched these coordinates with the earth’s rainfall and temperature dataset from

03/01/2013 to 03/01/2023, and removed extreme values(random noise) to get the training set

we used in this project.

We implemented multiple Machine Learning clustering algorithms including centroid-based

algorithms, density-based algorithms, and spectral clustering algorithms to classify the

childcare center based on the processed data, and evaluated our clustering result by

calculating the silhouette score, a metric that measures the clustering quality in a dataset. It

turned out that every algorithm’s score was above 0.3. More than that, the centroid-based

algorithm obtained 0.56, indicating that the clusters are well separated.

By visualizing our clusters on a map, we've identified varying risks among states, influenced

by the distribution of precipitation and surface temperature throughout different months in a

given year. This suggests that additional environmental factors will also be significant in

assessing the risk associated with a childcare facility and the overall region. These factors

will serve as the foundation for our forthcoming research, which is to combine more factors

like wind and snowfall into our clustering models.

1.1 Literature Review

In 2020, Bradatan et al. conducted research on the relationship between climate factors,

including temperature and rainfall, and child health in Honduras. They used generalized

estimating equations for binary logistic models and spatial association to analyze the child

health data from the Honduras Demographic Health Survey 2011–2012 dataset and climate
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data (1981–2012) from the Climate Research Unit (CRU TS3.21). Their results showed that

areas experiencing significant temperature anomalies are also those with the worst child

respiratory problems [3].

In 2021, Erick et al. conducted research on the impacts of rainfall variability and multiscale

vulnerabilities on birth weight in Amazonian regions. Using Bayesian models, their results

showed that rainfall variability confers intergenerational disadvantage, particularly affecting

socially marginalized Amazonians in overlooked areas [4].

Occupational heat stress risk is influenced by various factors, including environmental

conditions, heat sources, physical activity levels, clothing, and individual factors. Workload

considerations, as outlined in the OSHA Technical Manual, play a crucial role. Prevention

involves identifying heat hazards in the workplace and considering both environmental and

metabolic heat sources. Employers should assess total heat stress, comparing it to published

guidance and being mindful of heat advisories. Workers may experience heat stress at

temperatures lower than public advisories, emphasizing the importance of thorough

evaluation and proactive prevention measures. [5]

In the face of escalating extreme weather events linked to climate change, safeguarding

construction workers becomes paramount for contractors aiming to ensure workplace safety

and compliance with OSHA regulations. The challenges posed by extremely high

temperatures include sunstroke, dehydration, and machinery-related risks, necessitating

measures like facilitating access to water, scheduling shaded breaks, and promoting

consistent use of personal protective equipment. Similarly, heavy rain introduces hazards

such as slips, reduced visibility, and potential electrocution, demanding drainage planning,

temporary work halts, and provision of appropriate protective gear. A well-structured

construction schedule, coupled with preventive actions and worker education, emerges as a
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crucial strategy to mitigate the adverse effects of weather conditions, ensuring a secure and

productive construction site. [6]

Clustering algorithms are essential tools in unsupervised machine learning, offering insights

into unlabeled data by identifying inherent patterns and groupings. Three main types of

clustering algorithms—density-based, distribution-based, and centroid-based—provide

diverse approaches to handling different datasets. Examples of popular clustering algorithms

include K-means, DBSCAN, Gaussian Mixture Models, BIRCH, Affinity Propagation,

Mean-Shift, OPTICS, and Agglomerative Hierarchy. These algorithms find applications in

various fields, from fraud detection and customer segmentation to earthquake analysis and

city planning. Selecting the appropriate clustering algorithm depends on the nature of the data

and the specific goals of the analysis. The implementation of these algorithms, demonstrated

using a sample dataset, showcases their distinct characteristics and use cases, emphasizing the

importance of understanding their strengths and limitations in practical applications. [7]

K-Means clustering is a centroid-based algorithm designed to partition a dataset into K

clusters, with each observation assigned to the cluster whose centroid (mean) is nearest. The

iterative process begins by selecting the number of clusters (K) and initializing centroids,

typically through random selection or more strategic methods. Data points are then assigned

to the nearest cluster based on distance metrics like Euclidean Distance. The centroids are

recalculated by averaging the data points within each cluster, and the assignment process is

repeated until optimal centroids are achieved and assignments stabilize. This iterative nature

parallels the Expectation-Maximization (EM) approach, involving steps of assigning data

points to likely clusters (Expectation) and recomputing centroids (Maximization) using least

square optimization. Centroid initialization methods, such as random selection and Naive

Sharding, impact algorithm efficiency, with sharding offering improved execution time

compared to random initialization. Overall, K-Means clustering proves effective in
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identifying distinct groups within a dataset by minimizing the sum of distances between data

points and their assigned cluster centroids. [8]

Clustering analysis, an unsupervised learning method, categorizes data points into distinct

groups based on similarities, with various techniques such as K-Means, Affinity Propagation,

Mean-shift, DBSCAN, Gaussian Mixtures, and Spectral clustering. Among these,

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) stands out for its

ability to identify clusters with arbitrary shapes and handle noise and outliers effectively.

DBSCAN relies on defining a neighborhood around each point and requires parameters like

'eps' for neighborhood distance and 'MinPts' for the minimum number of neighbors within the

radius. It classifies points as the core, border, or noise based on their relationships. The

algorithm proceeds by assigning clusters to core points and recursively expanding them to

density-connected points. DBSCAN is particularly advantageous when dealing with

non-spherical data or an unknown number of classes. In summary, DBSCAN's robustness to

irregular shapes and noise makes it a preferred choice over traditional methods like K-Means

in clustering analysis under diverse real-life data scenarios. [9]

The Silhouette Score is a crucial tool in evaluating the effectiveness of clustering algorithms

by providing a quantitative measure of the cohesion and separation of data points within

clusters. Calculated by assessing the average distances within and between clusters for each

data point, the Silhouette Score aids in determining the appropriateness of cluster

assignments. In Python, this metric can be easily computed using the silhouette_score

function from scikit-learn. Interpreting the score involves considering its range from -1 to +1,

where negative values suggest potential misclassifications, values close to 0 indicate

ambiguous clustering and positive values signify well-defined and appropriately separated

clusters. The Silhouette Score holds significance in assessing algorithm performance,
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identifying anomalies, selecting optimal cluster numbers, and guiding clustering

improvements. [10]

1.2 Workflow Diagram

1. Dataset Generation

a. Filter child care centers by longitude and latitude

b. Match temperature and rainfall data based on longitude and latitude

2. Statistics & Data Cleaning

a. Exploratory Data Analysis

b. Interquartile Range

c. generate a cleaned training set

3. Clustering

a. K-means

b. Gaussian Mixture

c. DBSCAN

d. Spectral

4. Result Analysis

a. Calculate each cluster’s season’s average rainfall and temperature

b. generate rank based on the highest temperature in summer and the highest

rainfall

5. Data Visualization
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2 Data Description And Processing

2.1 Datasets

The goal of our project is to accurately identify childcare centers in Florida that face elevated

risks of high temperatures and rainfall. Consequently, it is crucial to ensure the reliability of

our datasets. In this regard, the dataset for childcare centers originated from the U.S.

government, specifically the Department of Health & Human Services. Additionally, we

sourced Land Surface Temperature (LST) data and rainfall data from NASA. For

temperature, we utilized daytime LST data, and for rainfall, we employed Global

Precipitation Measurement (GPM) data.

2.1.1 Childcare Center

The evolution of the modern workforce has seen a surge in parental involvement,

necessitating a greater reliance on childcare services. This shift is attributed to the prevalence

of dual-income households and the rise in single-parent households, fostering an amplified

requirement for secure and dependable childcare alternatives. Concurrently, a burgeoning

awareness has emerged regarding the pivotal role of early childhood education in shaping a

child's developmental journey. Consequently, parents are actively pursuing high-quality

childcare centers that provide safe havens and deliver enriching educational programs within

stimulating environments for their children. As a result, the significance and reliance placed

upon childcare centers have notably escalated in recent years, reflecting their pivotal role in

supporting working families and early childhood development.

We chose to examine vulnerable childcare centers due to the impact of temperature and

precipitation because of Florida's unique climatic conditions, characterized by fluctuating

temperatures, periodic heavy rainfall, and the occasional occurrence of severe weather events
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like hurricanes, creating a distinct environment for childcare centers. These weather

variations pose substantial challenges to the operational resilience and safety of childcare

facilities. Understanding the impact of temperature and precipitation on vulnerable childcare

centers in Florida becomes imperative in ensuring their preparedness, adaptability, and ability

to safeguard the children under their care. By analyzing these effects, we aim to uncover the

vulnerabilities these centers face, ranging from infrastructure susceptibility to potential health

risks for children. This investigation will not only elucidate the specific challenges but also

pave the way for tailored strategies, proactive measures, and resilient infrastructure

implementations. Ultimately, our analysis seeks to contribute insights that empower childcare

centers in Florida to mitigate risks, enhance their resilience, and continue providing safe and

reliable care amidst the diverse climatic conditions prevalent in the region.

The childcare data utilized in our analysis is sourced from the Homeland Infrastructure

Foundation-Level Data (HIFLD). We obtained all child care centers data in Florida, 2023,

and all datasets are formatted in CSV. Each dataset includes the following attributes for every

child care center: OBJECTID, ID, NAME, ADDRESS, CITY, STATE, ZIP, TELEPHONE,

TYPE, STATUS, POPULATION, COUNTY, COUNTYFIPS, COUNTRY, LATITUDE,

LONGITUDE, NAICS_CODE, NAICS_DESC, SOURCE, SOURCEDATE,

VAL_METHOD, VAL_DATE, WEBSITE, and ST_SUBTYPE. For our analysis, we

exclusively require the geographical coordinates, namely LATITUDE and LONGITUDE, to

support machine learning modeling and visualization purposes.

2.1.2 Temperature

The temperature data utilized in our analysis is sourced from the Land Surface Temperature

Daytime datasets (LSTD) [11] provided by the NASA Earth Observation program (NEO)

[12]. We gathered monthly average LSTD data, measured in Celsius degrees, spanning from
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March 2013 to February 2023, and all datasets are formatted in CSV. Each data file is

structured as a 2D matrix, where the rows and columns denote latitudes and longitudes,

respectively. Each file corresponds to the global LSTD data for its respective month,

featuring a resolution of 0.1 degrees. Consequently, the dimensions of the 2D matrix in each

data file are 3600x1800, where each point in the matrix records the LSTD value

corresponding to its (latitude, and longitude) coordinates. The separation between adjacent

points in the matrix is 0.1 degrees.

To acquire the monthly average Land Surface Temperature Daytime (LSTD) data for each

child care center, we match the (latitude, and longitude) coordinates of each center with the

nearest coordinates recorded in the LSTD datasets. Subsequently, we utilize the

corresponding recorded value as the temperature for the given childcare center.

2.1.3 Rainfall

The rainfall data utilized in our study also originates from the NASA Earth Observation

program, specifically derived from NASA's Global Precipitation Measurement (GPM)

datasets [13]. Similar to the Land Surface Temperature Daytime (LSTD) datasets, we

collected monthly average rainfall data, measured in mm/month, spanning from March 2013

to February 2023, with all data files formatted in CSV. Each rainfall data file comprises a 2D

matrix with dimensions 3600x1800, where the rows and columns correspond to latitudes and

longitudes, respectively. Within this matrix, each point records the rainfall data associated

with its respective coordinates. Maintaining a resolution of 0.1 degrees, each data file

encapsulates the monthly average rainfall data for its corresponding month. Similar to our

approach for temperature, when acquiring the monthly average rainfall data for each

childcare center, we select the nearest recorded coordinate from the rainfall datasets as the

value for the current center.
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2.2 Data Processing

We utilized Python to link the geographical location data of childcare centers with NASA's

rainfall and temperature data, creating a comprehensive dataset. Firstly, we generated a list of

dates starting from March 1, 2013, to February of 2023, covering the first day of every

month. Then, we read a CSV file containing the latitude and longitude information of

childcare centers, and based on these coordinates, we calculated the corresponding row and

column numbers on the global grid of NASA's rainfall and temperature data.

For each date in the list, we opened the respective NASA rainfall and temperature data file

using Python. These files contained global rainfall and temperature data for the

corresponding dates. We read this data and, using the previously calculated row and column

numbers, extracted the specific data for each childcare center. We then combined this rainfall

and temperature data with the ID of the childcare centers, forming a new data list. This list

included the ID of each childcare center along with the rainfall and temperature data for the

first day of every month from March 2013 to February 2023.

Finally, we wrote this list into a new CSV file. This file now contains comprehensive

information on childcare centers combined with geographical location and time-series rainfall

and temperature data, providing a valuable data resource for subsequent analysis. Through

this process, we effectively merged two separate datasets, creating a new dataset that can be

used for our further steps.

2.3 Data Cleaning

Data cleaning is an essential process to ensure the accuracy and reliability of our data

analysis. Our project focused on integrating and analyzing data from the childcare care

center, temperature, and rainfall datasets. We first conducted a thorough examination of all

three datasets for NULL values and non-applicable data points. This step is to identify any
11



incomplete or irrelevant data that could skew our analysis. It was found that only the

temperature dataset contains non-applicable data points with specific values like ‘99999.0’,

these values represent the temperature in sea or undetected areas not relevant to our analysis.

We removed all non-applicable values, this included all childcare centers with non-applicable

temperature data. Using the remaining 4,307 childcare centers and their IDs as a reference,

we merged the temperature and rainfall datasets for future analysis.

For each child care center’s 10-year temperature and rainfall data our team divided the data

into four quarters, corresponding to the four seasons of the year. Seasonal segmentation was

essential to identify seasonal patterns and abnormalities. We used the Interquartile Range

(IQR) method to identify and remove outliers from each quarter of the temperature and

rainfall data. Shown in the box and whisker plots above is a sample of the rainfall dataset

before and after the removal of outliers. The first plot illustrates multiple circles or points

falling outside the whiskers indicating outliers. These outliers are presented above the upper

whisker indicating there are many instances where rainfall was significantly higher than the

typical range. The second plot presents the data after outliers have been removed using the

IQR method, as shown the resulting plot shows data points tightly grouped, and the whiskers

are shorter reflecting a dataset that represents a more typical range of rainfall without extreme

values. By continuously inspecting, cleaning, integrating, and refining the dataset we laid a

solid foundation for our future data analytics to be accurate and insightful.
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3 Exploratory Data Analysis

Exploratory data analysis is necessary for any data analytics project to understand the

structure of the data, identify any patterns or abnormalities, and formulate hypotheses for

further statistical testing. Our EDA consists of a variety of analytical techniques and

visualization, including correlation matrix, histograms, kernel density estimates, and trend

analysis over quarterly data.

To begin our EDA process, a correlation matrix was developed to examine the relationships

between the different variables within our dataset. The image shows a quantitative

assessment of the strength and direction of linear relationships between pairs of variables.

From the image, we can tell a strong positive correlation between the temperature in quarter 3

and quarter 4 represented by dark blue representing a positive correlation, and a strong

negative correlation between rainfall in quarter 1 and temperature in quarter 4 represented by

dark red.
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A series of histograms were generated to visualize the distribution of key variables. A sample

of temperature and rainfall histograms are shown below. The histogram for Rainfall in

Quarter 3 shows a normal distribution of rainfall with a slight skew toward the right

indicating the concentration of data points around the median with some higher rainfall

events less frequently occurring. The histogram for Temperature in Quarter 2 shows a

multimodal distribution with several peaks meaning there may be multiple different common

temperatures during this quarter.

Kernel density estimates (KDEs) were generated to obtain a smooth estimate of the data

distribution. The Rainfall kernel density plot shows a large peak of around 100 and some

minor peaks representing some common rainfall amounts; this may suggest typical weather
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conditions in Quarter 3 or Autumn. The temperature kernel plot for Quarter 4 shows several

common temperatures during this quarter indicating a transitional season with high variability

in temperature.

Finally, we created two graphs to identify the trends across quarters, capturing variations and

patterns. The graph depicts the variability and trends of rainfall across four quarters, each line

represents a different location or ID and the spread of lines indicates variability in rainfall.

For Rainfall, there is a noticeable peak in the second quarter which represents summer. The

pattern suggests a cycle of rainfall with the second quarter corresponding to Florida’s wet

season. The peak in the second quarter or summer season for temperature and decrease in

temperature in the third and fourth quarters are normal observations. The tightly grouped

lines indicate the peak indicates the temperature is consistent across the childcare locations.

Insights drawn from these graphs are valuable for further analysis. The Exploratory data

analysis process helped visualize and analyze the data’s characteristics and guide our

analytics phase. Our team then moved on to model construction to further analyze the data at

hand.
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4 Model Construction And Results

In this study, we employed Machine Learning clustering models to categorize childcare

centers in Florida based on their average temperature and rainfall from 2013 to 2022 for each

quarter of the year. Subsequently, we identified childcare centers with a high risk of

temperature and rainfall by examining each cluster's average, minimum, and maximum

values. To enhance reliability, we utilized four distinct clustering models: Kmeans, Gaussian

Mixture, DBSCAN, and Spectral Clustering. We then employed the silhouette score to assess

the performance of each model and generated comprehensive statistics for their results,

including the average, standard deviation, minimum, and maximum temperature and rainfall

for each quarter of the year.

4.1 K-Means

K-Means [14] functions as a clustering algorithm, tasked with segregating a dataset into

distinct clusters based on the inherent similarities among its data points. The initial phase

involves the random selection of a predefined number of cluster centroids. Subsequently,

each data point undergoes assignment to the cluster with the nearest centroid, determined by

Euclidean distance. This step facilitates the grouping of data points based on their proximity

to the current centroids. Following this assignment, the algorithm updates the centroids by

computing the mean of all data points within each cluster. The iterative nature of this process

continues until convergence, marked by the stabilization of both assignment and centroid

values or the completion of a predetermined number of iterations. The primary objective of

K-Means is to minimize the within-cluster sum of squares, ultimately forming compact,

well-defined clusters. However, the algorithm's sensitivity to initial centroid placement

necessitates multiple runs with varying initializations or the adoption of strategies like

K-Means++ for a more intelligent start.
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In essence, K-Means strives to uncover meaningful patterns within a dataset by iteratively

refining cluster assignments and centroids. Despite its effectiveness, the algorithm's

sensitivity underscores the importance of careful initialization strategies to ensure the

attainment of robust and reliable clustering outcomes.

In this study, we utilized Kmeans to categorize childcare centers into four clusters. The

silhouette score for the obtained result is 0.568, indicating an acceptable level of clustering

quality. The table below illustrates the average temperature and rainfall for each cluster

during every quarter of the year.

Number of

points

Temperature Average (Celsius) Rainfall Average (mm/month)

Spring Summer Autumn Winter Spring Summer Autumn Winter

cluster 1 1425 30.77 32.15 28.43 22.98 74.88 227.46 111.35 53.30

cluster 2 915 33.07 34.77 30.88 26.27 63.87 197.16 151.92 61.54

cluster 3 288 26.75 30.59 25.47 16.79 108.90 179.19 98.38 116.63

cluster 4 1679 28.86 31.48 26.88 20.64 85.56 191.11 100.01 58.01

Examination of the table above reveals that clusters 1 and 4 collectively account for the

majority of childcare centers, totaling 3104 out of 4307 across all clusters. Notably, Cluster 2,

comprising 915 centers, exhibits the highest average temperature throughout all four quarters,

indicating an elevated risk of high temperatures for childcare centers in this group. On the

other hand, Cluster 3, consisting of 288 centers, experiences the highest average rainfall

during Spring and Winter. In Summer, Cluster 1 takes the lead in rainfall, while in Autumn,
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Cluster 2 surpasses others in this regard. These findings provide insights into the childcare

centers facing an elevated risk of rainfall during specific seasons.

4.2 Gaussian Mixture Model

Gaussian Mixture Models (GMMs) [15] operate by representing a dataset as a combination of

multiple Gaussian distributions. Each Gaussian component in the mixture represents a

distinct pattern or cluster within the data. The model assumes that the observed data is

generated from a mixture of these Gaussian distributions, and it employs the

Expectation-Maximization (EM) algorithm to iteratively estimate the parameters of these

distributions. During the Expectation step, the algorithm assigns probabilities to each data

point, indicating the likelihood of it belonging to each Gaussian component. In the

Maximization step, the model updates the mean, covariance, and weight of each Gaussian

based on these assigned probabilities. This process iterates until the model converges to a

stable solution, effectively capturing the underlying structure and clusters within the dataset.

GMMs are versatile and find applications in various domains, including clustering, density

estimation, and anomaly detection. They are particularly useful when dealing with complex

datasets that exhibit multiple patterns or when traditional clustering methods like k-means are

inadequate. GMMs provide a probabilistic framework, offering not only cluster assignments

but also a measure of uncertainty, making them valuable tools for understanding the inherent

complexity and structure of diverse datasets.

In our project, we once again utilize Gaussian Mixture to divide childcare centers into four

clusters. The silhouette score of the results is approximately 0.562, which falls within an

acceptable range. The table below provides the statistics for each cluster.
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Number of

points

Temperature Average (Celsius) Rainfall Average (mm/month)

Spring Summer Autumn Winter Spring Summer Autumn Winter

cluster 1 292 26.73 30.56 25.45 16.80 108.76 179.03 98.26 116.13

cluster 2 1404 30.78 32.18 28.44 22.96 74.99 227.54 111.59 53.24

cluster 3 913 33.07 34.79 30.89 26.28 63.87 197.15 151.98 61.97

cluster 4 1698 28.88 31.47 26.89 20.70 85.28 191.56 100.00 57.93

The table reveals that the Gaussian Mixture produced clustering results similar to those of

Kmeans. Clusters 2 and 4 contain the majority of points, totaling 3102 out of 4307 across all

clusters. Cluster 3, with a size of 913, exhibits the highest temperature in all quarters.

Regarding rainfall, Cluster 1, with a size of 292, has the highest values in Spring and Winter,

while Cluster 2, with a size of 1404, records the highest values in Summer, and Cluster 3

registers the highest values in Autumn.

4.3 DBSCAN

DBSCAN [16], which stands for Density-Based Spatial Clustering of Applications with

Noise, is a clustering algorithm that groups data points that are close to each other in a

high-dimensional space. Unlike k-means, DBSCAN doesn't require a specific number of

clusters beforehand and can identify clusters of arbitrary shapes.

The algorithm relies on two key parameters: Epsilon (ε) and MinPts. Epsilon represents the

maximum distance between two samples for one to be considered in the neighborhood of the

other, while MinPts is the minimum number of data points required to form a dense region.
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These parameters play a crucial role in determining the characteristics of the clusters

identified by DBSCAN.

DBSCAN categorizes data points into three main types: core points, border points, and noise

points. Core points are those with at least MinPts neighbors within a distance of ε. Border

points are within ε distance of a core point but lack sufficient neighbors to be considered core

points themselves. Noise points, on the other hand, do not fall into any cluster and are treated

as outliers. The algorithm proceeds through several steps, starting with the selection of an

arbitrary unvisited data point. If the chosen point is a core point, a new cluster is formed, and

all reachable points within ε distance are added to the cluster. If it's a border point, it joins an

existing cluster, and if it's noise, it's marked as an outlier. This process repeats until all data

points have been visited.

In this project, we randomly generated 20 epsilons in a range from 0.15 to 1.53 and

iteratively generated minimum sample values from 2 to 20 for the DBSCAN algorithm. We

used the itertools package to concatenate the epsilon values and minimum sample values into

a full combination list. Next, we imported the StandardScaler class from the sklearn library to

scale the training set to unit variance. By having the scaled training set, we loop through

every parameter combination in the list we obtained above and put them into the DBSCAN

model to get cluster results. Every time we trained the model with a parameter combination,

we used the result and scaled training set to calculate the silhouette score and compared the

score with other results to get the best cluster. In the end, the best score from DBSCAN is

0.35, which, although not as good as K-means, also reveals an acceptable result. The attached

form lists the number of nodes in each cluster and each season’s average temperature and

precipitation.
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Number of

points

Temperature Average (Celsius) Rainfall Average (mm/month)

Spring Summer Autumn Winter Spring Summer Autumn Winter

cluster 1 893 33.16 34.88 30.97 26.33 63.95 197.42 152.12 61.72

cluster 2 3106 29.74 31.8 27.6 21.72 80.61 207.82 105.3 55.81

cluster 3 153 26.77 30.37 25.38 16.93 103.81 167.98 95 97.89

cluster 4 124 26.71 30.87 25.57 16.67 114.28 194.59 102.56 136.98

noise

cluster

31 27.57 29.75 26.09 20.32 84.87 174.65 122.11 91.04

4.4 Spectral Clustering

Spectral clustering [17] functions as a dimensionality reduction and clustering technique,

based on the eigenvalues of the similarity matrix of the data. The initial phase involves the

construction of a graph representation of the data, where each node corresponds to a data

point and each edge weight reflects the similarity between the nodes. Subsequently, the

algorithm computes the Laplacian matrix of the graph and its eigenvectors. The eigenvectors

corresponding to the smallest eigenvalues are used to project the data into a

lower-dimensional space, where the clusters are more separable. Then, a standard clustering

algorithm like k-means is applied to the projected data to obtain the final cluster assignments.

The main objective of spectral clustering is to minimize the normalized cut, which measures

the dissimilarity between the clusters and the connectivity within the clusters. However, the

algorithm’s computational complexity and parameter selection require careful consideration

to ensure the efficiency and accuracy of the clustering results. Spectral clustering excels at
21



capturing complex cluster shapes and structures that conventional clustering algorithms might

fail to detect. In essence, spectral clustering leverages the spectral properties of the data graph

to perform clustering in a reduced space. Despite its limitations, the algorithm’s flexibility

and effectiveness demonstrate its potential for various applications such as image

segmentation, hierarchical clustering, and vector embedding.

In this study, we utilized Spectral to categorize childcare centers into four clusters. The

silhouette score for the obtained result is 0.389, indicating an acceptable level of clustering

quality. The table below illustrates the average temperature and rainfall for each cluster

during every quarter of the year.
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Number of

points

Temperature Average (Celsius) Rainfall Average (mm/month)

Spring Summer Autumn Winter Spring Summer Autumn Winter

cluster 1 1026 27.52 30.08 25.92 19.86 86.18 191.79 100.47 58.06

cluster 2 899 33.14 34.86 30.93 26.31 63.96 197.40 151.99 61.67

cluster 3 458 27.61 31.50 26.11 17.11 102.46 179.07 98.57 95.14

cluster 4 1924 30.97 32.57 28.51 22.94 76.57 218.70 108.66 54.93



5 Conclusion And Data Visualization

5.1 Data Visualization

To visually evaluate geographical patterns of precipitation-based risk exposure across

childcare facilities, we leveraged map visualization with markers indicating centers colored

by assigned clusters. This enabled the graphical inspection of spatial correlations in the data.

We could scan for regional concentrations of higher or lower vulnerability, pick out apparent

outliers, and look for clusters forming spatial boundaries.

In addition, we plotted cluster precipitation averages over time and compared them as the

rank across identified groupings. This facilitated the analysis of temporal dynamics and

precipitation deltas between risk clusters. Complementing the geospatial views, these graphs

revealed variations along seasonal and multi-year dimensions that were not otherwise visible.

Linking visual analytics directly to the clustered modeling outputs provided an accessible yet

multidimensional perspective for interrogating the data. Both regional inspectability and

temporal traces proved crucial for properly interpreting model-driven risk assessments in

context. These data visualizations constituted the most powerful lens for actionable insights

on differential climate impacts that could inform localized resilience planning.
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In the Data Visualization plots, we have four clusters on the map of Florida, and we use the

maximum precipitation within one year as the rank to color the clusters. As the table

described, we use red color to represent rank 4, orange color to represent rank 3, yellow color

to represent rank 2, and green color to represent rank 1. The higher the rank value shows, the

more precipitation in the region, which also means that childcare centers in that area are more

vulnerable to climate effects from temperature and precipitation.

The clustered model outputs grouped over 4,000 childcare centers across Florida into four

tiers categorized by precipitation-based climate vulnerability. Assigned risk levels derived

from statistical similarity among facilities' historical precipitation exposures over 10 years.

The highest risk tier (rank 4 coded red) emerged concentrated heavily in the southwest

region, where childcare infrastructure contends with Florida's predominant storm tracks. With

the ability to experience extreme tropical rainfall events, these communities face elevated

climate threats from floods. Conversely, the northern interior part of the state around the

capital clustered more commonly into lower precipitation/risk levels. However, modeled

vulnerabilities should not be viewed as static. While interior locations see less extreme

rainfall annually, they remain susceptible to severe storms and variability between years.

These spatial patterns and risk differentiations can guide planning and interventions to harden

childcare infrastructure against climate impacts proactively. From localized drainage

improvements to larger grid resilience initiatives, clustering model outputs help inform where

resources for climate adaptation may provide the greatest return on investment. Ultimately,

clustering and visualization enabled data-driven assessment of precipitation-related

vulnerabilities to support evidence-based policies that protect Florida’s children by making

their care environments more disaster-resilient.
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5.2 Conclusion

In this project, we successfully leveraged clustering algorithms to group childcare centers in

Florida by their vulnerability to climate effects from temperature and precipitation. The

clustering models generated coherent rankings of climate risk exposure across facilities.

Visualizations of model outputs revealed clear geospatial patterns in the data.

The clustering methodologies provided actionable insights into the relative vulnerabilities of

childcare centers at a point in time. However, enhancements could improve an understanding

of evolving risks. Expanding the feature set with additional climate factors like soil moisture

and population density may reveal deeper dynamics. Applying time series analysis to account

for seasonal and multi-year trends could strengthen predictive capabilities.

While the current scope covers only Florida due to limited data access and research time, the

intention is to scale nationally to provide decision-relevant information on climate threats to

childcare infrastructure across the entire United States. With further development and

support, this type of modeling approach could enable data-driven planning and resource

allocation to strengthen community-level resilience. The ultimate goal is an early warning

system that helps safeguard the well-being of children by mitigating climate hazards

proactively.
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